910 research outputs found

    Effect of argon ion energy on the performance of silicon nitridemultilayer permeation barriers grown by hot-wire CVD on polymers

    Get PDF
    One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support.Permeation barriers for organic electronic devices on polymer flexible substrates were realized by combining stacked silicon nitride (SiNx) single layers (50 nm thick) deposited by hot-wire chemical vapor deposition process at low-temperature (~100°C) with a specific argon plasma treatment between two successive layers. Several plasma parameters (RF power density, pressure, treatment duration) as well as the number of single layers have been explored in order to improve the quality of permeation barriers deposited on polyethylene terephthalate. In this work, maximumion energy was highlighted as the crucial parameter making it possible to minimize water vapor transmission rate (WVTR), as determined by the electrical calcium test method, all the other parameters being kept fixed. Thus fixing the plasma treatment duration at 8 min for a stack of two SiNx single layers, a minimum WVTR of 5 × 10−4 g/(m2 day), measured at room temperature, was found for a maximum ion energy of ~30 eV. This minimum WVTR value was reduced to 7 × 10−5 g/(m2 day) for a stack of five SiNx single layers. The reduction in the permeability is interpreted as due to the rearrangement of atoms at the interfaces when average transferred ion energy to target atoms exceeds threshold displacement energy.The authors are grateful to Dr. R. Cortes (PMC, Ecole Polytechnique) for XRR analysis, to Dr. P. Chapon (HORIBA Jobin Yvon) for GD-OES analysis and Dr. J. Leroy (CEA Saclay) for XPS analysis. This work was partly supported by the PICS (FrenchPortuguese) project No. 5336. One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support

    The effect of argon plasma treatment on the permeation barrier properties of silicon nitride layers

    Get PDF
    In this work we produce and study silicon nitride (SiNx) thin films deposited by Hot Wire Chemical Vapor Depo- sition (HW-CVD) to be used as encapsulation barriers for flexible organic photovoltaic cells fabricated on poly- ethylene terephthalate (PET) substrates in order to increase their shelf lifetime. We report on the results of SiNx double-layers and on the equivalent double-layer stack where an Ar-plasma surface treatment was performed on the first SiNx layer. The Ar-plasma treatment may under certain conditions influences the structure of the interface between the two subsequent layers and thus the barrier properties of the whole system. We focus our attention on the effect of plasma treatment time on the final barrier properties. We assess the encapsulation barrier properties of these layers, using the calcium degradation test where changes in the electrical conductance of encapsulated Ca sensors are monitored with time. The water vapor transmission rate (WVTR) is found to be ~3 × 10−3 g/m2·day for stacked SiNx double-layer with 8 min Ar plasma surface treatment.FCT - CNRS PICS (French–Portuguese no: 5336) projectDirection des Relations Extérieures, Ecole Polytechniqu

    Flexible organic–inorganic hybrid layer encapsulation for organic opto-electronic devices

    Get PDF
    In this work we produce and study the flexible organic–inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiNx:H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic–inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10−5g/m2day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications.The authors would like to thank Dr. J.C. Vanel for help in electrical characterizations used in this study. The first author (S.M) acknowledges the financial support from Direction des Relations Extérieures, Ecole Polytechnique during his thesis

    Influence of low energy argon plasma treatment on the moisture barrier performance of hot wire-CVD grown SiNx multilayers

    Get PDF
    The reliability and stability are key issues for the commercial utilization of organic photovoltaic devices based on flexible polymer substrates. To increase the shelf-lifetime of these devices, transparent moisture barriers of silicon nitride (SiNx) films are deposited at low temperature by hot wire CVD (HW-CVD) process. Instead of the conventional route based on organic/inorganic hybrid structures, this work defines a new route consisting in depositing multilayer stacks of SiNx thin films, each single layer being treated by argon plasma. The plasma treatment allows creating smoother surface and surface atom rearrangement. We define a critical thickness of the single layer film and focus our attention on the effect of increasing the number of SiNx single-layers on the barrier properties. A water vapor transmission rate (WVTR) of 2 x 10-4 g/(m2 day) is reported for SiNx multilayer stack and a physical interpretation of the plasma treatment effect is given.Direction des Relations Extérieures, Ecole PolytechniquePICS (French–Portuguese No. 5336) projec

    Managing Dynamic User Communities in a Grid of Autonomous Resources

    Get PDF
    One of the fundamental concepts in Grid computing is the creation of Virtual Organizations (VO's): a set of resource consumers and providers that join forces to solve a common problem. Typical examples of Virtual Organizations include collaborations formed around the Large Hadron Collider (LHC) experiments. To date, Grid computing has been applied on a relatively small scale, linking dozens of users to a dozen resources, and management of these VO's was a largely manual operation. With the advance of large collaboration, linking more than 10000 users with a 1000 sites in 150 counties, a comprehensive, automated management system is required. It should be simple enough not to deter users, while at the same time ensuring local site autonomy. The VO Management Service (VOMS), developed by the EU DataGrid and DataTAG projects[1, 2], is a secured system for managing authorization for users and resources in virtual organizations. It extends the existing Grid Security Infrastructure[3] architecture with embedded VO affiliation assertions that can be independently verified by all VO members and resource providers. Within the EU DataGrid project, Grid services for job submission, file- and database access are being equipped with fine- grained authorization systems that take VO membership into account. These also give resource owners the ability to ensure site security and enforce local access policies. This paper will describe the EU DataGrid security architecture, the VO membership service and the local site enforcement mechanisms Local Centre Authorization Service (LCAS), Local Credential Mapping Service(LCMAPS) and the Java Trust and Authorization Manager.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX, 5 eps figures. PSN TUBT00

    A MeerKAT-meets-LOFAR study of Abell 1413: a moderately disturbed non-cool-core cluster hosting a 500\sim 500 kpc 'mini'-halo

    Full text link
    Many relaxed cool-core clusters host diffuse radio emission on scales of hundreds of kiloparsecs: mini-haloes. However, the mechanism responsible for generating them, as well as their connection with central active galactic nuclei, is elusive and many questions related to their physical properties and origins remain unanswered. This paper presents new radio observations of the galaxy cluster Abell 1413 performed with MeerKAT (L-band; 872 to 1712 MHz) and LOFAR HBA (120 to 168 MHz) as part of a statistical and homogeneous census of mini-haloes. Abell 1413 is unique among mini-halo clusters as it is a moderately-disturbed non-cool-core cluster. Our study reveals an asymmetric mini-halo up to 584 kpc in size at 1283 MHz, twice as large as first reported at similar frequencies. The spectral index is flatter than previously reported, with an integrated value of α=1.01±0.06\alpha = -1.01 \pm 0.06, shows significant spatial variation, and a tentative radial steepening. We studied the point-to-point X-ray/radio surface brightness correlation to investigate the thermal/non-thermal connection: our results show a strong connection between these components, with a super-linear slope of b=1.63±0.10b = 1.63 \pm 0.10 at 1283 MHz and b=1.20±0.12b = 1.20 \pm 0.12 at 145 MHz. We also explore the X-ray surface brightness/radio spectral index correlation, finding a slope of b=0.59±0.11b = 0.59 \pm 0.11. Both investigations support the evidence of spectral steepening. Finally, in the context of understanding the particle acceleration mechanism, we present a simple theoretical model which demonstrates that hybrid scenarios - secondary electrons (re-)accelerated by turbulence - reproduce a super-linear correlation slope.Comment: 19 pages, 11 figures, 4 tables. Accepted for publication in MNRA

    The coma cluster at low frequency array frequencies. I. Insights into particle acceleration mechanisms in the radio bridge

    Get PDF
    Radio synchrotron emission from the bridges of low-density gas connecting galaxy clusters and groups is a challenge for particle acceleration processes. In this work, we analyze the Coma radio bridge using new LOw Frequency ARray (LOFAR) observations at 144 MHz. LOFAR detects the bridge and its substructures with unprecedented sensitivity and resolution. We found that the radio emission peaks on the NGC 4839 group. Toward the halo, in front of the NGC 4839 group, the radio brightness decreases and streams of radio emission connect the NGC 4839 group to the radio relic. Using X-ray observations, we found that thermal and non-thermal plasma are moderately correlated with a sublinear scaling. We use archival radio data at 326 MHz to constrain the spectral index in the bridge, and quantify the distribution of particles and magnetic field at different frequencies. We found that the spectrum is steeper than −1.4 ± 0.2, and that the emission is clumpier at 326 MHz than at 144 MHz. Using cosmological simulations and a simplified approach to compute particle acceleration, we derive under which conditions turbulent acceleration of mildly relativistic electrons generate the radio emission in the bridge. Assuming that the initial energy ratio of the seed electrons is 3 · 10−4 with respect to the thermal gas, we are able to reproduce the observed luminosity. Our results suggest that the seed electrons released by radio galaxies in the bridge and the turbulence generated by the motion of gas and galaxies are essential to producing the radio emission
    corecore